Sonido de un tsunami y de un terremoto
martes, 22 de marzo de 2011
lunes, 21 de marzo de 2011
Visiones de la Luna
La Luna es excepcionalmente extensa en relación a la Tierra: un cuarto del diámetro del planeta y 1/81 de su masa. Es el satélite más grande del Sistema Solar en relación al tamaño de su planeta (aunque Caronte es más extensa en relación al planeta enano Plutón). La superficie de la Luna es menos de un décimo de la de la Tierra; cerca de un cuarto del área continental de la Tierra. Sin embargo, la Tierra y la Luna siguen siendo consideradas un sistema planeta-satélite, en lugar de un sistema doble planetario, ya que su baricentro, está ubicado cerca de 1700 km (aproximadamente un cuarto del radio de la Tierra) bajo la superficie de la Tierra.
Formación
Varios mecanismos han sido propuestos para explicar la formación de la Luna hace 4.527 ± 0.010 mil millones de años. Esta edad es calculada en base a la datación del isótopo de las rocas lunares, entre 30 y 50 millones de años luego del origen del Sistema Solar. Estos incluyen la fisión de la Luna desde la corteza terrestre a través de fuerzas centrífugas, que deberían haber requerido también un giro inicial de la Tierra;[6] la atracción gravitacional de la Luna en estado de formación,[7] que hubiera requerido una extensión inviable de la atmósfera para disipar la energía de la Luna, que se encontraba pasando; y la co-formación de la Luna y la Tierra juntas en el disco de acreción primordial, que no explica la depleción de hierro en estado metálico. Estas hipótesis tampoco pueden explicar el fuerte momento angular en el sistema Tierra-Luna.
La hipótesis general hoy en día es que el sistema Tierra-Luna se formó como resultado de un gran impacto: un cuerpo celeste del tamaño de Marte colisionó con la joven Tierra, volando material en órbita alrededor de esta, que se fusionó para formar la Luna. Se cree que impactos gigantescos eran comunes en el Sistema Solar primitivo. Los modelados de un gran impacto a través de simulaciones computacionales concuerdan con las mediciones del momento angular del sistema Tierra-Luna, y el pequeño tamaño del núcleo lunar; a su vez demuestran que la mayor parte de la Luna proviene del impacto, no de la joven Tierra. Sin embargo, meteoritos demuestran que las composiciones isotópicas del oxígeno y el tungsteno de otros cuerpos del Sistema Solar interior tales como Marte y Vesta son muy distintas a las de la Tierra, mientras que la Tierra y la Luna poseen composiciones isotópicas prácticamente idénticas. El mezclado de material evaporado posterior al impacto entre la Tierra y la Luna pudo haber equiparado las composiciones, aunque esto es debatido.
La importante cantidad de energía liberada en el gran impacto y la subsecuente fusión del material en la órbita de la Tierra pudo haber derretido la capa superficial de la Tierra, formando un océano de magma. La recién formada Luna pudo también haber tenido su propio océano de magma lunar; las estimaciones de su profundidad varían entre 500 km y el radio entero de la Luna.
domingo, 20 de marzo de 2011
jueves, 17 de marzo de 2011
Glinka
Mijaíl Ivánovich Glinka (en ruso Михаил Иванович Глинка) (Novospásskoye, provincia de Smolensk, 1 de junio de 1804 – Berlín, 15 de febrero de 1857) fue un compositor ruso.
Durante sus viajes visitó España, donde conoció y admiró la música popular española, de la cual utilizó el estilo de la jota en su obra La jota aragonesa.“Recuerdos de Castilla”, basado en su prolífera estancia en Fresdelval, “Recuerdo de una noche de verano en Madrid”, sobre la base de la obertura "La noche en Madrid" son parte de su música orquestal. El método utilizado por Glinka para arreglar la forma y orquestación son influencia del folclore español. Las nuevas ideas de Glinka fueron plasmadas en “Las oberturas españolas”.
Glinka fue el primer compositor ruso en ser reconocido fuera de su país y, generalmente, se le considera el 'padre' de la música rusa. Su trabajo ejerció una gran influencia en las generaciones siguientes de compositores de su país.
Sus obras más conocidas son las óperas Una vida por el Zar, (1836-1844) que es la primera ópera nacionalista rusa, y Ruslán y Liudmila (1845-1857), cuyo libreto fue escrito por Alexandr Pushkin y su obertura se suele interpretar en las salas de concierto. En Una vida por el Zar alternan arias de tipo italiano con melodías populares rusas. No obstante, la alta sociedad occidentalizada no admitió fácilmente esa intrusión de "lo vulgar" en un género tradicional como la ópera. Sus obras orquestales son menos conocidas.
Inspiró a un grupo de compositores a reunirse (más tarde, serían conocidos como "los cinco": Modest Mussorgsky, Nikolai Rimsky-Korsakov, Alexandr Borodin, Tsesar Kui, Mili Balakirev) para crear música basada en la cultura rusa. Este grupo, más tarde, fundaría la Escuela Nacionalista Rusa. Es innegable la influencia de Glinka en otros compositores como Vassili Kalinnikov, Mijail Ippolitov Ivanov, y aún en Piotr Tchaikovsky.
Durante sus viajes visitó España, donde conoció y admiró la música popular española, de la cual utilizó el estilo de la jota en su obra La jota aragonesa.“Recuerdos de Castilla”, basado en su prolífera estancia en Fresdelval, “Recuerdo de una noche de verano en Madrid”, sobre la base de la obertura "La noche en Madrid" son parte de su música orquestal. El método utilizado por Glinka para arreglar la forma y orquestación son influencia del folclore español. Las nuevas ideas de Glinka fueron plasmadas en “Las oberturas españolas”.
Glinka fue el primer compositor ruso en ser reconocido fuera de su país y, generalmente, se le considera el 'padre' de la música rusa. Su trabajo ejerció una gran influencia en las generaciones siguientes de compositores de su país.

Inspiró a un grupo de compositores a reunirse (más tarde, serían conocidos como "los cinco": Modest Mussorgsky, Nikolai Rimsky-Korsakov, Alexandr Borodin, Tsesar Kui, Mili Balakirev) para crear música basada en la cultura rusa. Este grupo, más tarde, fundaría la Escuela Nacionalista Rusa. Es innegable la influencia de Glinka en otros compositores como Vassili Kalinnikov, Mijail Ippolitov Ivanov, y aún en Piotr Tchaikovsky.
Una de las obras mas conocidas es la obertura de Rusland y Ludmila, de la cual podeis escuchar el comienzo
Brahms
Brahms
(1833-1897)
Johannes Brahms fue un excelente pianista y compositor alemán de música clásica del Romanticismo. Entre sus obras orquestales se encuentran distintas sinfonías y oberturas. Sin embargo las piezas más populares del compositor han sido las Danzas Húngaras. Quizás la más conocida es la número 5.
domingo, 13 de marzo de 2011
Laboratorio de Química del IES da Terra Cha
En esta prsentación se muestra el Laboratorío de Química ( Compartido con el departamento de Agraría) de este Instituto. Algunas fotografías corresponden a algunas de las experiencias que se llevarón a cabo.
jueves, 10 de marzo de 2011
Ondas
En física, una onda es una propagación de una perturbación de alguna propiedad de un medio, por ejemplo, densidad, presión, campo eléctrico o campo magnético, que se propaga a través del espacio transportando energía. El medio perturbado puede ser de naturaleza diversa como aire, agua, un trozo de metal o el vacío
Una vibración puede ser definida como un movimiento de ida y vuelta alrededor de un punto de referencia. Sin embargo, definir las características necesarias y suficientes que caracterizan un fenómeno como onda es, como mínimo, algo flexible. El término suele ser entendido intuitivamente como el transporte de perturbaciones en el espacio, donde no se considera el espacio como un todo sino como un medio en el que pueden producirse y propagarse dichas perturbaciones a través de él. En una onda, la energía de una vibración se va alejando de la fuente en forma de una perturbación que se propaga en el medio circundante (Hall, 1980: 8). Sin embargo, esta noción es problemática en casos como una onda estacionaria (por ejemplo, una onda en una cuerda bajo ciertas condiciones) donde la transferencia de energía se propaga en ambas direcciones por igual, o para ondas electromagnéticas/luminosas en el vacío, donde el concepto de medio no puede ser aplicado.
Por tales razones, la teoría de ondas se conforma como una característica rama de la física que se ocupa de las propiedades de los fenómenos ondulatorios independientemente de cual sea su origen físico (Ostrovsky y Potapov, 1999). Una peculiaridad de estos fenómenos ondulatorios es que a pesar de que el estudio de sus características no depende del tipo de onda en cuestión, los distintos orígenes físicos que provocan su aparición les confieren propiedades muy particulares que las distinguen de unos fenómenos a otros. Por ejemplo, la acústica se diferencia de la óptica en que las ondas sonoras están relacionadas con aspectos más mecánicos que las ondas electromagnéticas (que son las que gobiernan los fenómenos ópticos). Conceptos tales como masa, cantidad de movimiento, inercia o elasticidad son conceptos importantes para describir procesos de ondas sonoras, a diferencia de en las ópticas, donde estas no tienen una especial relevancia. Por lo tanto, las diferencias en el origen o naturaleza de las ondas producen ciertas propiedades que caracterizan cada onda, manifestando distintos efectos en el medio en que se propagan (por ejemplo, en el caso del aire: vórtices, ondas de choque. En el caso de los sólidos: dispersión. En el caso del electromagnetismo presión de radiación.)
Otras propiedades, sin embargo, pueden ser generalizadas a todas las ondas. Por ejemplo, teniendo en cuenta el origen mecánico de las ondas sonoras, estas pueden propagarse en el espacio-tiempo si y solo si el medio no es infinitamente rígido ni infinitamente flexible. Si todas las partes que constituyen un medio estuvieran rígidamente ligadas podrían vibrar como un todo sin retraso en la transmisión de la vibración y, por lo tanto, sin movimiento ondulatorio (o un movimiento de onda infinitamente rápido). Por otro lado, si todas las partes fueran independientes, no podría haber ninguna transmisión de la vibración y de nuevo, no habría movimiento ondulatorio (o sería infinitamente lento). Aunque lo dicho anteriormente no tiene sentido para ondas que no requieren de un medio, sí muestra una característica relevante a todas las ondas independientemente de su origen: para una misma onda, la fase de una vibración (que es el estado de perturbación en que se encuentra una determinada parte del medio) es diferente para puntos adyacentes en el espacio, ya que la vibración llega a estos en tiempos distintos.
Una vibración puede ser definida como un movimiento de ida y vuelta alrededor de un punto de referencia. Sin embargo, definir las características necesarias y suficientes que caracterizan un fenómeno como onda es, como mínimo, algo flexible. El término suele ser entendido intuitivamente como el transporte de perturbaciones en el espacio, donde no se considera el espacio como un todo sino como un medio en el que pueden producirse y propagarse dichas perturbaciones a través de él. En una onda, la energía de una vibración se va alejando de la fuente en forma de una perturbación que se propaga en el medio circundante (Hall, 1980: 8). Sin embargo, esta noción es problemática en casos como una onda estacionaria (por ejemplo, una onda en una cuerda bajo ciertas condiciones) donde la transferencia de energía se propaga en ambas direcciones por igual, o para ondas electromagnéticas/luminosas en el vacío, donde el concepto de medio no puede ser aplicado.
Por tales razones, la teoría de ondas se conforma como una característica rama de la física que se ocupa de las propiedades de los fenómenos ondulatorios independientemente de cual sea su origen físico (Ostrovsky y Potapov, 1999). Una peculiaridad de estos fenómenos ondulatorios es que a pesar de que el estudio de sus características no depende del tipo de onda en cuestión, los distintos orígenes físicos que provocan su aparición les confieren propiedades muy particulares que las distinguen de unos fenómenos a otros. Por ejemplo, la acústica se diferencia de la óptica en que las ondas sonoras están relacionadas con aspectos más mecánicos que las ondas electromagnéticas (que son las que gobiernan los fenómenos ópticos). Conceptos tales como masa, cantidad de movimiento, inercia o elasticidad son conceptos importantes para describir procesos de ondas sonoras, a diferencia de en las ópticas, donde estas no tienen una especial relevancia. Por lo tanto, las diferencias en el origen o naturaleza de las ondas producen ciertas propiedades que caracterizan cada onda, manifestando distintos efectos en el medio en que se propagan (por ejemplo, en el caso del aire: vórtices, ondas de choque. En el caso de los sólidos: dispersión. En el caso del electromagnetismo presión de radiación.)
Otras propiedades, sin embargo, pueden ser generalizadas a todas las ondas. Por ejemplo, teniendo en cuenta el origen mecánico de las ondas sonoras, estas pueden propagarse en el espacio-tiempo si y solo si el medio no es infinitamente rígido ni infinitamente flexible. Si todas las partes que constituyen un medio estuvieran rígidamente ligadas podrían vibrar como un todo sin retraso en la transmisión de la vibración y, por lo tanto, sin movimiento ondulatorio (o un movimiento de onda infinitamente rápido). Por otro lado, si todas las partes fueran independientes, no podría haber ninguna transmisión de la vibración y de nuevo, no habría movimiento ondulatorio (o sería infinitamente lento). Aunque lo dicho anteriormente no tiene sentido para ondas que no requieren de un medio, sí muestra una característica relevante a todas las ondas independientemente de su origen: para una misma onda, la fase de una vibración (que es el estado de perturbación en que se encuentra una determinada parte del medio) es diferente para puntos adyacentes en el espacio, ya que la vibración llega a estos en tiempos distintos.
Suscribirse a:
Entradas (Atom)